Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Appl Genet ; 63(1): 73-86, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34561842

RESUMO

Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population "Grenado" × "Zorro" composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


Assuntos
Triticale , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética
2.
Front Plant Sci ; 11: 365, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318083

RESUMO

Cassava (Manihot esculenta Crantz) is an important crop for subsistence farming in tropical and subtropical regions. There is a need to increase the rate of genetic gain to develop varieties adapted to new environmental conditions affected by climate change, which also influences the patterns of pests and diseases. The rate of cassava genetic improvement is limited by the difficulty in obtaining true-breeding types (inbred/homozygous lines). Cassava inbreeding obtained through conventional sequential self-pollination increases exposure of useful recessive traits and breeding value of progenitors. However, it takes 10-15 years to produce homozygous lines through successive self-pollination. Doubled haploid (DH) technology is a functional alternative to progressive self-pollination, and is already widely used in major crops to accelerate inbreeding. This work aimed at developing a protocol for the culture of isolated ovules and the induction of gynogenesis in cassava. Basic groundbreaking studies on cassava embryo sac development are presented. A protocol using unpollinated ovules collected from ovaries 1 day after anthesis is described. In the unpollinated-cultured ovules, the presence of embryos formed probably from the egg cells and not surrounded by the endosperm, was documented by anatomical analyses. This achievement is an important first step in the development of a reproducible gynogenesis protocol for the generation of doubled haploids in cassava. This protocol can also be useful as a starting point to obtain DHs using alternative methods of induction such as pollination of cassava with pollen of distant species or with cassava pollen irradiated with gamma rays.

3.
Acta Biochim Pol ; 66(3): 343-350, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509370

RESUMO

Two winter triticale (x Triticosecale Wittmack) model cultivars: Hewo (tolerant to pink snow mould) and Magnat (sensitive) were used to test the effect of cold-hardening (4 weeks at 4°C) on soluble ≤50 kDa protein profiles of the seedling leaves. The presence and abundance of individual proteins were analysed via two-dimensional gel electrophoresis (2-DE) and Surface-Enhanced Laser Desorption/Ionization Time-of-Flight (SELDI-TOF). Up to now, no proteomics analysis of triticale response to hardening has been performed. Thus, the present paper is the first in the series describing the obtained results. In our experiments, the exposure to the low temperature-induced only quantitative changes in the leaves of both cultivars, causing either an increase or decrease of 4-50 kDa protein abundance. Among proteins which were cold-accumulated in cv. Hewo's leaves, we identified two thioredoxin peroxidases (chloroplastic thiol-specific antioxidant proteins) as well as mitochondrial- ß-ATP synthase subunit and ADP-binding resistance protein. On the contrary, in hardened seedlings of this genotype, we observed the decreased level of chloroplastic RuBisCO small subunit PW9 and epidermal peroxidase 10. Simultaneous SELDI-TOF analysis revealed several low mass proteins better represented in cold-hardened plants of tolerant genotype in comparison to the sensitive one and the impact of both genotype and temperature on their level. Based on those results, we suggest that indicated proteins might be potential candidates for molecular markers of cold-induced snow mould resistance of winter triticale and their role is worth to be investigated in the further inoculation experiments.


Assuntos
Temperatura Baixa , Resistência à Doença , Micoses/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plântula/microbiologia , Triticale/microbiologia , Xylariales/isolamento & purificação , Complexos de ATP Sintetase , Proteínas de Arabidopsis , Grão Comestível/microbiologia , Eletroforese em Gel Bidimensional , Genótipo , Peroxirredoxinas , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plântula/metabolismo , Neve/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triticale/metabolismo
4.
Plant Methods ; 15: 71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316582

RESUMO

BACKGROUND: Clearing methods allow relatively quick processing of plant material and examination of cellular structures by rendering tissues and organs translucent. They have been adapted for plant embryology, primarily to study ovule development, megasporogenesis, megagametogenesis and embryogenesis. Such clearing methods overcome several disadvantages of the conventional embedding-sectioning techniques that are arduous and time-consuming. Although numerous protocols with different clearing solutions have been described, there have been no reports to date proposing a reliable method to clear the crassinucellate ovules of the sugar beet (Beta vulgaris L.), an economically important crop. Therefore, this study aims to find a suitable approach to improve the tissue transparency of sugar beet ovules at different developmental stages. RESULTS: We established a methyl salicylate-based protocol that significantly improved the transparency of the B. vulgaris ovule structures, which allowed us to observe the megagameto- and embryogenesis of that species. This was achieved by (1) chemical softening of the tissues; (2) vacuum pump-assisted infiltration step; (3) shaking-assisted incubation with clearing mixtures; and (4) manual removal of the chemically softened seed coat. CONCLUSIONS: The effectiveness of our method is due to the strategy combining various approaches at different stages of the procedure aiming at increasing the accessibility of the internal ovule structures to the clearing solution. The results of this study may be applied in sugar beet breeding programs, and it will provide a basis for further investigation of numerous aspects of the species' embryology. Moreover, that unique approach may be easily adapted to other species developing crassinucellate ovules.

5.
Physiol Plant ; 165(4): 711-727, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29774565

RESUMO

Microdochium nivale is a fungal pathogen that causes yield losses of cereals during winter. Cold hardening under light conditions induces genotype-dependent resistance of a plant to infection. We aim to show how photosystem II (PSII) regulation contributes to plant resistance. Using mapping population of triticale doubled haploid lines, three M. nivale strains and different infection assays, we demonstrate that plants that maintain a higher maximum quantum efficiency of PSII show less leaf damage upon infection. The fungus can establish necrotrophic or biotrophic interactions with susceptible or resistant genotypes, respectively. It is suggested that local inhibition of photosynthesis during the infection of sensitive genotypes is not balanced by a supply of energy from the tissue surrounding the infected cells as efficiently as in resistant genotypes. Thus, defence is limited, which in turn results in extensive necrotic damage. Quantitative trait loci regions, involved in the control of both PSII functioning and resistance, were located on chromosomes 4 and 6, similar to a wide range of PSII- and resistance-related genes. A meta-analysis of microarray experiments showed that the expression of genes involved in the repair and de novo assembly of PSII was maintained at a stable level. However, to establish a favourable energy balance for defence, genes encoding PSII proteins resistant to oxidative degradation were downregulated to compensate for the upregulation of defence-related pathways. Finally, we demonstrate that the structural and functional integrity of the plant is a factor required to meet the energy demand of infected cells, photosynthesis-dependent systemic signalling and defence responses.


Assuntos
Ascomicetos/patogenicidade , Complexo de Proteína do Fotossistema II/metabolismo , Triticale/metabolismo , Triticale/microbiologia , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticale/genética
6.
Front Plant Sci ; 7: 1600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833625

RESUMO

Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.

7.
PLoS One ; 10(12): e0145714, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717308

RESUMO

Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars 'Hewo' and 'Magnat'. The map consists of 1615 bin markers, that represent 50 simple sequence repeat (SSR), 842 diversity array technology (DArT), and 16888 DArTseq markers mapped onto 20 linkage groups assigned to the A, B, and R genomes of triticale. No markers specific to chromosome 7R were found, instead mosaic linkage group composed of 1880 highly distorted markers (116 bins) from 10 wheat chromosomes was identified. The genetic map covers 4907 cM with a mean distance between two bins of 3.0 cM. Comparative analysis in respect to published maps of wheat, rye and triticale revealed possible deletions in chromosomes 4B, 5A, and 6A, as well as inversion in chromosome 7B. The number of bin markers in each chromosome varied from 24 in chromosome 3R to 147 in chromosome 6R. The length of individual chromosomes ranged between 50.7 cM for chromosome 2R and 386.2 cM for chromosome 7B. A total of 512 (31.7%) bin markers showed significant (P < 0.05) segregation distortion across all chromosomes. The number of 8 the segregation distorted regions (SDRs) were identified on 1A, 7A, 1B, 2B, 7B (2 SDRs), 5R and 6R chromosomes. The high-density genetic map of triticale will facilitate fine mapping of quantitative trait loci, the identification of candidate genes and map-based cloning.


Assuntos
Mapeamento Cromossômico , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Triticale/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genoma de Planta
8.
J Plant Physiol ; 177: 30-43, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25666539

RESUMO

The breeding for resistance against fungal pathogens in winter triticale (Triticosecale Wittm.) continues to be hindered by a complexity of the resistance mechanisms, strong interaction with environmental conditions, and dependence on the plant genotype. We showed, that temperature below 4 °C induced the plant genotype-dependent resistance against the fungal pathogen Microdochium nivale. The mechanism involved, at least, the adjustment of the reactions in the PSII proximity and photoprotection, followed by an improvement of the growth and development. The genotypes capable to develop the cold-induced resistance, showed a higher maximum quantum yield of PSII and a more efficient integration of the primary photochemistry of light reactions with the dark reactions. Moreover, induction of the photoprotective mechanism, involving at least the peroxidases scavenging hydrogen peroxide, was observed for such genotypes. Adjustment of the photosynthesis and stress acclimation has enabled fast plant growth and avoidance of the developmental stages sensitive to fungal infection. The same mechanisms allowed the quick regrow of plants during the post-disease period. In contrast, genotypes that were unable to develop resistance despite cold hardening had less flexible balancing of the photoprotection and photoinhibition processes. Traits related to: photosynthesis-dependent cold-acclimation and cold-induced resistance; biomass accumulation and growth; as well as protection system involving peroxidases; were integrated also at a genetic level. Analysing 95 lines of the mapping population SaKa3006×Modus we determined region on chromosomes 5B and 7R shared within all tested traits. Moreover, similar expression pattern of a set of the genes related to PSII was determined with the metaanalysis of the multiple microarray experiments. Comparable results for peroxidases, involving APXs and GPXs and followed by PRXs, indicated a similar function during cold acclimation and defense responses. These data provide a new insight into the cross talk between cold acclimation and cold-induced resistance in triticale, indicating a key role of photosynthesis-related processes.


Assuntos
Fungos/fisiologia , Doenças das Plantas/microbiologia , Triticale/microbiologia , Triticale/fisiologia , Aclimatação , Temperatura Baixa , Peroxidases/genética , Peroxidases/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticale/genética , Triticale/crescimento & desenvolvimento
9.
Protoplasma ; 251(1): 103-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23933840

RESUMO

Isolated microspores of B. napus in culture change their developmental pathway from gametophytic to sporophytic and form embryo-like structures (ELS) upon prolonged heat shock treatment (5 days at 32 °C). ELS express polarity during the initial days of endosporic development. In this study, we focussed on the analysis of polarity development of ELS without suspensor. Fluorescence microscopy and 3-D confocal laser scanning microscopy (CLSM) without tissue interfering enabled us to get a good insight in the distribution of nuclei, mitochondria and endoplasmic reticulum (ER), the architecture of microtubular (MT) cytoskeleton and the places of 5-bromo-2'-deoxy-uridine (BrdU) incorporation in successive stages of microspore embryogenesis. Scanning electron microscopy (SEM) analysis revealed, for the first time, the appearance of a fibrillar extracellular matrix-like structure (ECM-like structure) in androgenic embryos without suspensor. Two types of endosporic development were distinguished based upon the initial location of the microspore nucleus. The polarity of dividing and growing cells was recognized by the differential distributions of organelles, by the organization of the MT cytoskeleton and by the visualization of DNA synthesis in the cell cycle. The directional location of nuclei, ER, mitochondria and starch grains in relation to the MTs configurations were early polarity indicators. Both exine rupture and ECM-like structure on the outer surfaces of ELS are supposed to stabilize ELS's morphological polarity. As the role of cell polarity during early endosporic microspore embryogenesis in apical-basal cell fate determination remains unclear, microspore culture system provides a powerful in vitro tool for studying the developmental processes that take place during the earliest stages of plant embryogenesis.


Assuntos
Brassica napus/citologia , Brassica napus/crescimento & desenvolvimento , Polaridade Celular , Imageamento Tridimensional , Pólen/crescimento & desenvolvimento , Células Cultivadas , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Pólen/ultraestrutura
10.
Protoplasma ; 249(2): 369-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21611884

RESUMO

Isolated microspores and pollen suspension of Brassica napus "Topas" cultured in NLN-13 medium at 18°C follow gametophytic pathway and develop into pollen grains closely resembling pollen formed in planta. This culture system complemented with whole-mount immunocytochemical technology and novel confocal laser scanning optical technique enables detailed studies of male gametophyte including asymmetric division, cytoskeleton, and nuclear movements. Microtubular cytoskeleton configurationally changed in successive stages of pollen development. The most prominent role of microtubules (MTs) was observed just before and during nuclear migration at the early and mid-bi-cellular stage. At the early bi-cellular stage, parallel arrangement of cortical and endoplasmic MTs to the long axis of the generative cell (GC) as well as MTs within GC under the plasmalemma bordering vegetative cell (VC) were responsible for GC lens shape. At the beginning of the GC migration, endoplasmic microtubules (EMTs) of the VC radiated from the nuclear envelope. Most cortical and EMTs of the VC were found near the sporoderm. At the same time, pattern of MTs observed in GC was considerably different. Multiple EMTs of the GC, previously parallel aligned, reorganized, and start to surround GC, forming a basket-like structure. These results suggest that EMTs of GC provoke changes in GC shape, its detachment from the sporoderm, and play an important role in GC migration to the vegetative nucleus (VN). During the process of migration of the GC to the VC, multiple and thick bundles of MTs, radiating from the cytoplasm near GC plasma membrane, arranged perpendicular to the narrow end of the GC and organized into a "comet-tail" form. These GC "tail" MTs became shortened and the generative nucleus (GN) took a ball shape. The dynamic changes of MTs accompanied polarized distribution pattern of mitochondria and endoplasmic reticulum. In order to confirm the role of MTs in pollen development, a "whole-mount" immunodetection technique and confocal laser-scanning microscopy was essential.


Assuntos
Brassica napus/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Pólen/metabolismo , Microscopia Confocal
11.
Plant Cell Rep ; 30(11): 2105-16, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21779827

RESUMO

In the new Brassica napus microspore culture system, wherein embryos with suspensors are formed, ab initio mimics zygotic embryogenesis. The system provides a powerful in vitro tool for studying the diverse developmental processes that take place during early stages of plant embryogenesis. Here, we studied in this new culture system both the temporal and spatial distribution of nuclear DNA synthesis places and the organization of the microtubular (MT) cytoskeleton, which were visualized with a refined whole mount immunolocalization technology and 3D confocal laser scanning microscopy. A 'mild' heat stress induced microspores to elongate, to rearrange their MT cytoskeleton and to re-enter the cell cycle and perform a predictable sequence of divisions. These events led to the formation of a filamentous suspensor-like structure, of which the distal tip cell gave rise to the embryo proper. Cells of the developing pro-embryo characterized endoplasmic (EMTs) and cortical microtubules (CMTs) in various configurations in the successive stages of the cell cycle. However, the most prominent changes in MT configurations and nuclear DNA replication concerned the first sporophytic division occurring within microspores and the apical cell of the pro-embryo. Microspore embryogenesis was preceded by pre-prophase band formation and DNA synthesis. The apical cell of the pro-embryo exhibited a random organization of CMTs and, in relation to this, isotropic expansion occurred, mimicking the development of the apical cell of the zygotic situation. Moreover, the apical cell entered the S phase shortly before it divided transversally at the stage that the suspensor was 3-8 celled.


Assuntos
Brassica napus/embriologia , Brassica napus/metabolismo , Núcleo Celular/metabolismo , DNA de Plantas/biossíntese , Microtúbulos/metabolismo , Pólen/embriologia , Sementes/metabolismo , Brassica napus/citologia , Bromodesoxiuridina/metabolismo , Células Cultivadas , Resposta ao Choque Térmico , Morfogênese , Pólen/citologia , Pólen/metabolismo , Sementes/citologia
12.
Plant Cell Rep ; 28(8): 1279-87, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19551385

RESUMO

Isolated microspore cultures of two spring triticale (x Triticosecale Wittm.) cultivars were used to examine the effect of various stress treatments (either high--32 degrees C or low--5 degrees C temperature with or without nitrogen/carbohydrate starvation) applied to excised anthers on the effectiveness of microspore embryogenesis induction. To quantify the effects of pretreatment conditions, the activity of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) together with respiration rate and heat emission were measured. It was observed that heat shock treatment applied as the only one stress factor increased the activity of antioxidative enzymes which suggests intensive generation of reactive oxygen species. Such pretreatment effectively triggered microspore reprogramming but drastically decreased microspore viability. After low temperature treatment, the activity of antioxidative enzymes was similar to the control subjected only with the stress originated from the transfer to in vitro culture conditions. This pretreatment decreased the number of microspores entering embryogenesis but sustained cell viability and this effect prevailed in the final estimation of microspore embryogenesis effectiveness. For both, low- and high-temperature treatments, interaction with starvation stress was beneficial increasing microspore viability (at 5 degrees C) or efficiency of embryogenesis induction (at 32 degrees C). The latter treatment significantly reduced cell metabolic activity. Physiological background of these effects seems to be different and some hypothetical explanations have been discussed. Received data indicate that in triticale, anther preculture conditions could generate oxidative stress and change the cell metabolic activity which could next be reflected in the cell viability and the efficiency of microspore embryogenesis.


Assuntos
Grão Comestível/genética , Desenvolvimento Embrionário , Flores/enzimologia , Estresse Oxidativo , Metabolismo dos Carboidratos , Respiração Celular , Células Cultivadas , Temperatura Baixa , Grão Comestível/embriologia , Grão Comestível/enzimologia , Flores/embriologia , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Temperatura Alta , Nitrogênio/metabolismo , Regeneração , Estresse Fisiológico
13.
Ann Bot ; 100(4): 767-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17684022

RESUMO

BACKGROUND AND AIMS: The objectives of this study were to investigate whether a classification of triticale genotypes into drought-tolerant and drought-sensitive types based on field performance trials correlates with a classification based on measurements of some physiological and biochemical parameters in greenhouse conditions. In addition, an examination was carried out of whether ferulic acid, as the main origin of the blue fluorescence produced, contributes to drought tolerance. METHODS: Ten winter triticale genotypes were examined, five known to be drought tolerant and five drought sensitive. Measurements of the osmotic potential, leaf gas exchange, chlorophyll fluorescence, and blue and red fluorescence were performed. In addition, analysis of the total pool of phenolic compounds and ferulic acid as well as the measurements of PAL (l-phenylalanine ammonia-lyase) activity were carried out. KEY RESULTS: In agreement with field trials, three out of five cultivars ('Lamberto', 'Timbo' and 'Piano') were classified as drought tolerant. However, in the case of cultivar 'Babor', included in the group of drought-sensitive cultivars, the values obtained for some measured parameters were close to (F(v)(')/F(m)('), phenolics content, osmotic potential) or even better than (non-photochemical quenching, red and blue fluorescence, ferulic acid content) those for drought-tolerant genotypes. Cultivars 'Imperial', 'Ticino', 'Trimaran' and 'Boreas' were included in the drought-sensitive group, whereas cultivars 'Focus' and 'Kitaro' were included in the moderately sensitive group. CONCLUSIONS: The experiments confirmed that the period of flowering, the critical phase for plants as far as water demand is concerned, is suitable for plant screening and differentiation due to their tolerance to drought. The most important criteria which enabled creation of the ranking list of plants, from those sensitive to drought to those tolerant to drought, were the ability to perform the process of osmoregulation, the efficiency of the utilization of excitation energy by the photosynthetic apparatus and the functioning of protective mechanisms involving the level of ferulic acid in leaf tissues.


Assuntos
Ácidos Cumáricos/metabolismo , Grão Comestível/genética , Genótipo , Clorofila/metabolismo , Dessecação , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Fluorescência , Hidroxibenzoatos/metabolismo , Pressão Osmótica , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo
14.
Plant Cell Rep ; 25(8): 758-66, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16528566

RESUMO

Excellent visualisation of microtubules and actin filaments was obtained in fixed tobacco BY-2 suspension cells after optimising a protocol for whole mount immunolabelling. The procedure is based on modification of fixation, cell wall digestion, dimethyl sulfoxide (DMSO) treatment, post fixation, and blocking. The most critical aspects of successful preservation and visualization of cytoskeletal elements appeared to be: a two-step fixation with paraformaldehyde and glutaraldehyde before enzymatic cell wall digestion and a post fixation with aldehydes thereafter. The method allows the improved visualization of the organisation of the microtubular and actin filament arrays during the successive stages of cell division and at interphase. Although we present the application of our protocols for cytoskeleton labelling, the excellent results show the potential of using this method for the analysis of various proteins and molecules in plant cells.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/imunologia , Imuno-Histoquímica/métodos , Microtúbulos/química , Microtúbulos/imunologia , Nicotiana/citologia , Fixação de Tecidos , Divisão Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Dimetil Sulfóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA